
13

Computational problems related to quadratic
residues

13.1 Computing the Jacobi symbol

Suppose we are given an odd, positive integer n, along with an integer a,
and we want to compute the Jacobi symbol (a | n). Theorem 12.8 suggests
the following algorithm:

t← 1
repeat

// loop invariant: n is odd and positive

a← a mod n
if a = 0

if n = 1 return t else return 0

compute a′, h such that a = 2ha′ and a′ is odd
if h 6≡ 0 (mod 2) and n 6≡ ±1 (mod 8) then t← −t
if a′ 6≡ 1 (mod 4) and n 6≡ 1 (mod 4) then t← −t
(a, n)← (n, a′)

forever

That this algorithm correctly computes the Jacobi symbol (a | n) fol-
lows directly from Theorem 12.8. Using an analysis similar to that of Eu-
clid’s algorithm, one easily sees that the running time of this algorithm is
O(len(a) len(n)).

Exercise 13.1. Develop a “binary” Jacobi symbol algorithm, that is, one
that uses only addition, subtractions, and “shift” operations, analogous to
the binary gcd algorithm in Exercise 4.1.

Exercise 13.2. This exercise develops a probabilistic primality test based

290

13.2 Testing quadratic residuosity 291

on the Jacobi symbol. For odd integer n > 1, define

Gn := {α ∈ Z∗n : α(n−1)/2 = [Jn(α)]n},

where Jn : Z∗n → {±1} is the Jacobi map.

(a) Show that Gn is a subgroup of Z∗n.

(b) Show that if n is prime, then Gn = Z∗n.

(c) Show that if n is composite, then Gn (Z∗n.

(d) Based on parts (a)–(c), design and analyze an efficient probabilistic
primality test that works by choosing a random, non-zero element
α ∈ Zn, and testing if α ∈ Gn.

13.2 Testing quadratic residuosity

In this section, we consider the problem of testing whether a is a quadratic
residue modulo n, for given integers a and n, from a computational perspec-
tive.

13.2.1 Prime modulus

For an odd prime p, we can test if an integer a is a quadratic residue modulo p
by either performing the exponentiation a(p−1)/2 mod p or by computing the
Legendre symbol (a | p). Assume that 0 ≤ a < p. Using a standard repeated
squaring algorithm, the former method takes time O(len(p)3), while using
the Euclidean-like algorithm of the previous section, the latter method takes
time O(len(p)2). So clearly, the latter method is to be preferred.

13.2.2 Prime-power modulus

For an odd prime p, we know that a is a quadratic residue modulo pe if and
only if a is a quadratic residue modulo p. So this case immediately reduces
to the previous case.

13.2.3 Composite modulus

For odd, composite n, if we know the factorization of n, then we can also de-
termine if a is a quadratic residue modulo n by determining if it is a quadratic
residue modulo each prime divisor p of n. However, without knowledge of
this factorization (which is in general believed to be hard to compute), there
is no efficient algorithm known. We can compute the Jacobi symbol (a | n);

292 Computational problems related to quadratic residues

if this is−1 or 0, we can conclude that a is not a quadratic residue; otherwise,
we cannot conclude much of anything.

13.3 Computing modular square roots

In this section, we consider the problem of computing a square root of a
modulo n, given integers a and n, where a is a quadratic residue modulo n.

13.3.1 Prime modulus

Let p be an odd prime, and let a be an integer such that 0 < a < p and
(a | p) = 1. We would like to compute a square root of a modulo p. Let
α := [a]p ∈ Z∗p, so that we can restate our problem of that of finding β ∈ Z∗p
such that β2 = α, given α ∈ (Z∗p)2.

We first consider the special case where p ≡ 3 (mod 4), in which it turns
out that this problem can be solved very easily. Indeed, we claim that in
this case

β := α(p+1)/4

is a square root of α—note that since p ≡ 3 (mod 4), the number (p+ 1)/4
is an integer. To show that β2 = α, suppose α = β̃2 for some β̃ ∈ Z∗p. We
know that there is such a β̃, since we are assuming that α ∈ (Z∗p)2. Then
we have

β2 = α(p+1)/2 = β̃p+1 = β̃2 = α,

where we used Fermat’s little theorem for the third equality. Using a
repeated-squaring algorithm, we can compute β in time O(len(p)3).

Now we consider the general case, where we may have p 6≡ 3 (mod 4).
Here is one way to efficiently compute a square root of α, assuming we are
given, in addition to α, an auxiliary input γ ∈ Z∗p \ (Z∗p)2 (how one obtains
such a γ is discussed below).

Let us write p− 1 = 2hm, where m is odd. For any δ ∈ Z∗p, δm has mul-
tiplicative order dividing 2h. Since α2h−1m = 1, αm has multiplicative order
dividing 2h−1. Since γ2h−1m = −1, γm has multiplicative order precisely
2h. Since there is only one subgroup of Z∗p of order 2h, it follows that γm

generates this subgroup, and that αm = γmx for 0 ≤ x < 2h and x is even.
We can find x by computing the discrete logarithm of αm to the base γm,
using the algorithm in §11.2.3. Setting κ = γmx/2, we have

κ2 = αm.

13.3 Computing modular square roots 293

We are not quite done, since we now have a square root of αm, and not of
α. Since m is odd, we may write m = 2t+ 1 for some non-negative integer
t. It then follows that

(κα−t)2 = κ2α−2t = αmα−2t = αm−2t = α.

Thus, κα−t is a square root of α.
Let us summarize the above algorithm for computing a square root of

α ∈ (Z∗p)2, assuming we are given γ ∈ Z∗p \ (Z∗p)2, in addition to α:

Compute positive integers m,h such that p− 1 = 2hm with m odd
γ′ ← γm, α′ ← αm

Compute x← logγ′ α
′ // note that 0 ≤ x < 2h and x is even

β ← (γ′)x/2α−bm/2c

output β

The total amount of work done outside the discrete logarithm calcu-
lation amounts to just a handful of exponentiations modulo p, and so
takes time O(len(p)3). The time to compute the discrete logarithm is
O(h len(h) len(p)2). So the total running time of this procedure is

O(len(p)3 + h len(h) len(p)2).

The above procedure assumed we had at hand a non-square γ. If h = 1,
which means that p ≡ 3 (mod 4), then (−1 | p) = −1, and so we are done.
However, we have already seen how to efficiently compute a square root in
this case.

If h > 1, we can find a non-square γ using a probabilistic search algorithm.
Simply choose γ at random, test if it is a square, and if so, repeat. The
probability that a random element of Z∗p is a square is 1/2; thus, the expected
number of trials until we find a non-square is 2, and hence the expected
running time of this probabilistic search algorithm is O(len(p)2).

Exercise 13.3. Let p be an odd prime, and let f ∈ Zp[X] be a polynomial
with 0 ≤ deg(f) ≤ 2. Design and analyze an efficient, probabilistic algo-
rithm that determines if f has any roots in Zp, and if so, finds all of the
roots. Hint: see Exercise 9.14.

Exercise 13.4. Show that the following two problems are deterministic,
poly-time equivalent (see discussion just above Exercise 11.10 in §11.3):

(a) Given an odd prime p and α ∈ (Z∗p)2, find β ∈ Z∗p such that β2 = α.

(b) Given an odd prime p, find an element of Z∗p \ (Z∗p)2.

294 Computational problems related to quadratic residues

Exercise 13.5. Design and analyze an efficient, deterministic algorithm
that takes as input primes p and q, such that q | (p − 1), along with an
element α ∈ Z∗p, and determines whether or not α ∈ (Z∗p)q.

Exercise 13.6. Design and analyze an efficient, deterministic algorithm
that takes as input primes p and q, such that q | (p − 1) but q2 - (p − 1),
along with an element α ∈ (Z∗p)q, and computes a qth root of α, that is, an
element β ∈ Z∗p such that βq = α.

Exercise 13.7. We are given a positive integer n, two elements α, β ∈ Zn,
and integers e and f such that αe = βf and gcd(e, f) = 1. Show how
to efficiently compute γ ∈ Zn such that γe = β. Hint: use the extended
Euclidean algorithm.

Exercise 13.8. Design and analyze an algorithm that takes as input primes
p and q, such that q | (p−1), along with an element α ∈ (Z∗p)q, and computes
a qth root of α. (Unlike Exercise 13.6, we now allow q2 | (p − 1).) Your
algorithm may be probabilistic, and should have an expected running time
that is bounded by q1/2 times a polynomial in len(p). Hint: the previous
exercise may be useful.

Exercise 13.9. Let p be an odd prime, γ be a generator for Z∗p, and α be
any element of Z∗p. Define

B(p, γ, α) :=
{

1 if logγ α ≥ (p− 1)/2;
0 if logγ α < (p− 1)/2.

Suppose that there is an algorithm that efficiently computes B(p, γ, α) for
all p, γ, α as above. Show how to use this algorithm as a subroutine in
an efficient, probabilistic algorithm that computes logγ α for all p, γ, α as
above. Hint: in addition to the algorithm that computes B, use algorithms
for testing quadratic residuosity and computing square roots modulo p, and
“read off” the bits of logγ α one at a time.

13.3.2 Prime-power modulus

Let p be an odd prime, let a be an integer relatively prime to p, and let e > 1
be an integer. We know that a is a quadratic residue modulo pe if and only
if a is a quadratic residue modulo p. Suppose that a is a quadratic residue
modulo p, and that we have found an integer z such that z2 ≡ a (mod p),
using, say, one of the procedures described in §13.3.1. From this, we can
easily compute a square root of a modulo pe using the following technique,
which is known as Hensel lifting.

13.3 Computing modular square roots 295

More generally, suppose we have computed an integer z such that z2 ≡
a (mod pf), for some f ≥ 1, and we want to find an integer ẑ such that
ẑ2 ≡ a (mod pf+1). Clearly, if ẑ2 ≡ a (mod pf+1), then ẑ2 ≡ a (mod pf),
and so ẑ ≡ ±z (mod pf). So let us set ẑ = z + pfu, and solve for u. We
have

ẑ2 ≡ (z + pfu)2 ≡ z2 + 2zpfu+ p2fu2 ≡ z2 + 2zpfu (mod pf+1).

So we want to find integer u such that

2zpfu ≡ a− z2 (mod pf+1).

Since pf | (z2 − a), by Theorem 2.5, the above congruence holds if and only
if

2zu ≡ a− z2

pf
(mod p).

From this, we can easily compute the desired value u, since gcd(2z, p) = 1.
By iterating the above procedure, starting with a square root of a modulo

p, we can quickly find a square root of a modulo pe. We leave a detailed
analysis of the running time of this procedure to the reader.

Exercise 13.10. Suppose you are given a polynomial f ∈ Z[X], along with
a prime p and a root z of f modulo p, that is, an integer z such that
f(z) ≡ 0 (mod p). Further, assume that z is simple root of f modulo p,
meaning that D(f)(z) 6≡ 0 (mod p), where D(f) is the formal derivative of
f . Show that for any integer e ≥ 1, f has a root modulo pe, and give an
efficient procedure to find it. Also, show that the root modulo pe is uniquely
determined, in the following sense: if two such roots are congruent modulo
p, then they are congruent modulo pe.

13.3.3 Composite modulus

To find square roots modulo n, where n is an odd composite modulus, if we
know the prime factorization of n, then we can use the above procedures
for finding square roots modulo primes and prime powers, and then use the
algorithm of the Chinese remainder theorem to get a square root modulo n.

However, if the factorization of n is not known, then there is no efficient
algorithm known for computing square roots modulo n. In fact, one can show
that the problem of finding square roots modulo n is at least as hard as the
problem of factoring n, in the sense that if there is an efficient algorithm for

296 Computational problems related to quadratic residues

computing square roots modulo n, then there is an efficient (probabilistic)
algorithm for factoring n.

Here is an algorithm to factor n, using a modular square-root algorithm
as a subroutine. For simplicity, we assume that n is of the form n = pq,
where p and q are distinct, odd primes. Choose β to be a random, non-
zero element of Zn. If d := gcd(rep(β), n) > 1, then output d (recall that
rep(β) denotes the canonical representative of β). Otherwise, set α := β2,
and feed n and α to the modular square-root algorithm, obtaining a square
root β′ ∈ Z∗n of α. If the square-root algorithm returns β′ ∈ Z∗n such that
β′ = ±β, then output “failure”; otherwise, output gcd(rep(β−β′), n), which
is a non-trivial divisor of n.

Let us analyze this algorithm. If d > 1, we split n, so assume that d = 1,
which means that β ∈ Z∗n. In this case, β is uniformly distributed over
Z∗n, and α is uniformly distributed over (Z∗n)2. Let us condition on an a
fixed value of α, and on fixed random choices made by the modular square-
root algorithm (in general, this algorithm may be probabilistic). In this
conditional probability distribution, the value β′ returned by the algorithm
is completely determined. If θ : Zp × Zq → Zn is the ring isomorphism of
the Chinese remainder theorem, and β′ = θ(β′1, β

′
2), then in this conditional

probability distribution, β is uniformly distributed over the four square roots
of α, which we may write as θ(±β′1,±β′2).

With probability 1/4, we have β = θ(β′1, β
′
2) = β′, and with probability

1/4, we have β = θ(−β′1,−β′2) = −β′, and so with probability 1/2, we
have β = ±β′, in which case we fail to factor n. However, with probability
1/4, we have β = θ(−β′1, β′2), in which case β − β′ = θ(−2β′1, 0), and since
2β′1 6= 0, we have p - rep(β − β′) and q | rep(β − β′), and so gcd(rep(β −
β′), n) = q. Similarly, with probability 1/4, we have β = θ(β′1,−β′2), in
which case β − β′ = θ(0,−2β′2), and since 2β′2 6= 0, we have p | rep(β − β′)
and q - rep(β − β′), and so gcd(rep(β − β′), n) = p. Thus, with probability
1/2, we have β 6= ±β′, and gcd(rep(β − β′), n) splits n.

Since we split n with probability 1/2 conditioned on any fixed choice α ∈
(Z∗n)2 and any fixed random choices of the modular square-root algorithm,
it follows that we split n with probability 1/2 conditioned simply on the
event that β ∈ Z∗n. Also, conditioned on the event that β /∈ Z∗n, we split n
with certainty, and so we may conclude that the above algorithm splits n
with probability at least 1/2.

Exercise 13.11. Generalize the algorithm above to efficiently factor arbi-

13.4 The quadratic residuosity assumption 297

trary integers, given a subroutine that computes arbitrary modular square
roots.

13.4 The quadratic residuosity assumption

Loosely speaking, the quadratic residuosity (QR) assumption is the as-
sumption that it is hard to distinguish squares from non-squares in Z∗n, where
n is of the form n = pq, and p and q are distinct primes. This assumption
plays an important role in cryptography. Of course, since the Jacobi symbol
is easy to compute, for this assumption to make sense, we have to restrict
our attention to elements of ker(Jn), where Jn : Z∗n → {±1} is the Jacobi
map. We know that (Z∗n)2 ⊆ ker(Jn) (see Exercise 12.2). Somewhat more
precisely, the QR assumption is the assumption that it is hard to distinguish
a random element in ker(Jn) \ (Z∗n)2 from a random element in (Z∗n)2, given
n (but not its factorization!).

To give a rough idea as to how this assumption may be used in cryptog-
raphy, assume that p ≡ q ≡ 3 (mod 4), so that [−1]n ∈ ker(Jn) \ (Z∗n)2, and
moreover, ker(Jn)\ (Z∗n)2 = [−1]n(Z∗n)2 (see Exercise 12.3). The value n can
be used as a public key in a public-key cryptosystem (see §7.8). Alice, know-
ing the public key, can encrypt a single bit b ∈ {0, 1} as β := (−1)bα2, where
Alice chooses α ∈ Z∗n at random. The point is, if b = 0, then β is uniformly
distributed over (Z∗n)2, and if b = 1, then β is uniformly distributed over
ker(Jn)\ (Z∗n)2. Now Bob, knowing the secret key, which is the factorization
of n, can easily determine if β ∈ (Z∗n)2 or not, and hence deduce the value of
the encrypted bit b. However, under the QR assumption, an eavesdropper,
seeing just n and β, cannot effectively figure out what b is.

Of course, the above scheme is much less efficient than the RSA cryp-
tosystem presented in §7.8, but nevertheless, has attractive properties; in
particular, its security is very closely tied to the QR assumption, whereas
the security of RSA is a bit less well understood.

Exercise 13.12. Suppose that A is a probabilistic algorithm that takes as
input n of the form n = pq, where p and q are distinct primes such that
p ≡ q ≡ 3 (mod 4). The algorithm also takes as input α ∈ ker(Jn), and
outputs either 0 or 1. Furthermore, assume that A runs in strict polynomial
time. Define two random variables, Xn and Yn, as follows: Xn is defined
to be the output of A on input n and a value α chosen at random from
ker(Jn) \ (Z∗n)2, and Yn is defined to be the output of A on input n and a
value α chosen at random from (Z∗n)2. In both cases, the value of the random
variable is determined by the random choice of α, as well as the random

298 Computational problems related to quadratic residues

choices made by the algorithm. Define ε(n) := |P[Xn = 1] − P[Yn = 1]|.
Show how to use A to design a probabilistic, expected polynomial time
algorithm A′ that takes as input n as above and α ∈ ker(Jn), and outputs
either “square” or “non-square,” with the following property:

if ε(n) ≥ 0.001, then for all α ∈ ker(Jn), the probability that
A′ correctly identifies whether α ∈ (Z∗n)2 is at least 0.999.

Hint: use the Chernoff bound.

Exercise 13.13. Assume the same notation as in the previous exercise.
Define the random variable X ′n to be the output of A on input n and a value
α chosen at random from ker(Jn). Show that |P[X ′n = 1] − P[Yn = 1]| =
ε(n)/2. Thus, the problem of distinguishing ker(Jn) from (Z∗n)2 is essentially
equivalent to the problem of distinguishing ker(Jn) \ (Z∗n)2 from (Z∗n)2.

13.5 Notes

Exercise 13.2 is based on Solovay and Strassen [94].
The probabilistic algorithm in §13.3.1 for computing square roots modulo

p can be made deterministic under a generalization of the Riemann hypothe-
sis. Indeed, as discussed in §10.7, under such a hypothesis, Bach’s result [10]
implies that the least positive integer that is not a quadratic residue modulo
p is at most 2 log p (this follows by applying Bach’s result with the sub-
group (Z∗p)2 of Z∗p). Thus, we may find the required element γ ∈ Z∗p \ (Z∗n)2

in deterministic polynomial time, just by brute-force search. The best un-
conditional bound on the smallest positive integer that is not a quadratic
residue modulo p is due to Burgess [22], who gives a bound of pα+o(1), where
α := 1/(4

√
e) ≈ 0.15163.

Goldwasser and Micali [39] introduced the quadratic residuosity assump-
tion to cryptography (as discussed in §13.4). This assumption has subse-
quently been used as the basis for numerous cryptographic schemes.

